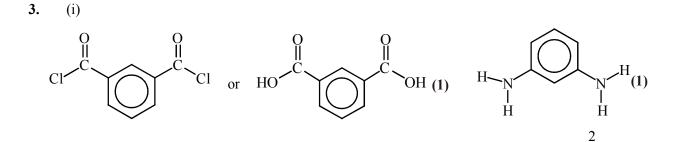

1. $H_2N(CH_2)_6NH_2 \checkmark$


ALLOW H₂NCH₂CH₂CH₂CH₂CH₂CH₂CH₂NH₂

HOOC(CH₂)₈COOH ✓

[2]

(b)

(ii) any valid suggestion to explain or describe stronger intermolecular forces – *e.g.* Nomex is planar so packs together more easily / greater H-bonding / Van der Waals' / forces between molecules (1) AW (ignore arguments based on *M*r)

(b) (i)
$$PCl_5 / SOCl_2$$

(ii) HCl

(c)
$$H_3 N^+ - (CH_2)_6 - NH_3^+ (1)^{-0} - C^{-1} - (CH_2)_4 - C^{-0} = 2$$

allow 1 mark for: both $H_3 N^+ - (CH_2)_6 - NH_3^+ and$
 $H_0 - C^{-1} - (CH_2)_4 - C^{-0} = 0$

Plymstock School

2

1

1 1 [3]

	(iii)	any three different chemically or biologically correct differences between amino acids and the nylon monomers $(1)(1)(1) - eg$			
		•	protein monomers are amino acids / nylon monomers are a (di)amine/base and a (di)acid		
		•	protein monomers have different types/R groups / nylon monomers are two types/no variation		
		•	protein monomers have stereo/optical isomers/are chiral		
		•	protein monomers have higher melting points/ form zwitterions		
other possible answers include:			r possible answers include:		
		•	nylon monomers have longer chain length/no other functional groups / no aromatic content / are symmetrical etc don't allow comparisons solubility or M_r	3	
					[13]
i)	addit	ion (po	olymerisation) (1) NOT additional	1	
ii)					
11)					
			ų 💬		

5. (i)

(ii)

(1)

(iii) π -bond breaks (1)

many molecules join / a long chain forms / equation to show this using 'n' (1)

[4]

1

2